EVN Observation Planner. Helps you to plan a VLBI observation. Given a date, source coordinates, and a VLBI array, it will tell you when the source can be observed by each antenna, the reached rms noise level and resolution, among other details.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Benito Marcote 692c74f423 Data files moved to importlib. functions.py gone 2 years ago
assets Tooltip on stations from checklist 2 years ago
data Data files moved to importlib. functions.py gone 2 years ago
doc Data files moved to importlib. functions.py gone 2 years ago
mockups First commit after refactoring 2 years ago
tests Proper repackaging 2 years ago
vlbiplanobs Data files moved to importlib. functions.py gone 2 years ago
LICENSE Updated info in LICENSE (GPLv3+) 2 years ago
MANIFEST.in Adding include lines 2 years ago
Procfile Preparations for deployment 2 years ago
README.md Data files moved to importlib. functions.py gone 2 years ago
app.py Data files moved to importlib. functions.py gone 2 years ago
requirements.txt Somehow Obit joined requirements. Was not invited 2 years ago
setup.cfg Adding MANIFEST and package_data files 2 years ago
setup.py Adding MANIFEST and package_data files 2 years ago


EVN Observation Planner

The EVN Observation Planner is a tool to determine the visibility of a given astronomical source when planning very-long-baseline-interferometry (VLBI) observations. The tool is specially written for the preparation of observations with the European VLBI Network (EVN), but it can be used for any kind of VLBI observations than can be currently arranged (e.g. with the Very Long Baseline Array, VLBA; the Australian Long Baseline Array, LBA; eMERLIN; or the global mm-VLBI array, for example). An ad-doc VLBI array can also be quickly configured.

In addition to the determination of the source visibility by the different antennas, the EVN Observation Planner would provide an estimation of the expected rms noise level (sensitivity) reached during the planned observations, and an estimation of the resolution. The EVN Observation Planner can thus be used while preparing an observing proposal. Note that the EVN Observation Planner has been designed as a complementary, but more featured, version of the current EVN Calculator.

It runs online!

You can make use of the EVN Observation Planner just by going to the Heroku running server, without installing anything. Note that this is a temporary link, and soon it will be hosted in its final location inside the EVN website.

It only requires the minimal information to be able to compute the results of the observation:

  • Select the observing band (at which frequency, or wavelength, do you want to observe?).
  • Select a default VLBI network, or make an ad-hoc one by selecting manually the worldwide antennas that you want to use. You will see that only the antennas that can observe at the given band would be selectable.
  • Enter the start and end of the planned observation, and the coordinates (in J2000 format) of the main source you want to observe.
  • You can still tune more technical details of the observation, like the expected data rate, number of subbands, channels, or integration time. But default values will always been set automatically for your help.

After all this, you only need to press a button (computer observation) and you will presented with a detailed output in the different tabs:

  • A summary showing the size of the data that you may expect to be downloaded (once correlated), the longest and shortest baselines in the array, the expected synthesized beam (resolution), and rms noise level of the resulting image, and the limitations in the field of view due to the frequency and time averaging.
  • A couple of plots showing the elevation of the source for all the selected antennas, and the time ranges when they can observe the source.
  • A plot showing the expected u, v coverage. Note that depending on how filled the (u,v) plane is, the better reconstructed the resulting image will be.

You can also run it locally by downloading the code and running:

python app.py

But you can also use it inside your Python programs or interactively!

The EVN Observation Planner can also be used inside a Python environment or inside your own programs without the need of running a server, ignoring the Dash server.

import vlbiplanobs

# Two main modules that can also be imported directly
from vlbiplanobs import stations
from vlbiplanobs import observation

# You can define your source and telescopes before setting the observation:

# You can define the source you want to observe with:
source = observation.Source(coordinates='XXhXXmXXs XXdXXmXXs', name='my_source')

# To can then retrieve the coordinates (as in a astropy.coordinates.angles.Longitude/Latitude object) with:

# Or retrieve the full astropy.coordinates object as

# Then you can set the observation

Station additions

The information about each station is stored in an independent file under data/stations_catalog.inp (following a Python configuration file format). Then, the addition or update of a new station is extremely straightforward. You can manually add a new station by introducing a new entry in the file with the following fields and syntax:

[Station Name]

station = Station Name
code = # An unique code to identify the station (it can be the abbreviation of the full station name).
network = # If the station belongs to one of the known VLBI Networks, or 'Other' otherwise.
possible_networks = # a comma-separated list of possible VLBI Networks that the station can join to observe.
country =  # Country where the station is located.
diameter =  # station diameter in free format (e.g. '30 m' or '30 x 20 m' is often used for the case of interferometers composed of 30 20-m antennas).
position = X, Y, Z  # Geocentric coordinates of the station.
min_elevation = XX  # minimum elevation the station can observe, in degrees. By default it is 10 deg if not specified.
real_time = no/yes  #  In case the station can participate in real-time correlation observations (e.g. e-EVN). By default 'no'.
SEFD_YY = ZZ   # Multiple inputs providing the estimated System Equivalent Flux Density (SEFD) of the station (ZZ measured in Jy) at the observing wavelength YY in cm. There should be one entry per observing band.
# The lack of entries would be understood as the station is unable to observe at such band.